1,523 research outputs found

    Crossed Andreev effects in two-dimensional quantum Hall systems

    Full text link
    We study the crossed Andreev effects in two-dimensional conductor/superconductor hybrid systems under a perpendicular magnetic field. Both a graphene/superconductor hybrid system and an electron gas/superconductor one are considered. It is shown that an exclusive crossed Andreev reflection, with other Andreev reflections being completely suppressed, is obtained in a high magnetic field because of the chiral edge states in the quantum Hall regime. Importantly, the exclusive crossed Andreev reflection not only holds for a wide range of system parameters, e.g., the size of system, the width of central superconductor, and the quality of coupling between the graphene and the superconductor, but also is very robust against disorder. When the applied bias is within the superconductor gap, a robust Cooper-pair splitting process with high-efficiency can be realized in this system.Comment: 10 pages, 10 figure

    Polarized γ\gamma-photon beams produced by collision of two ultrarelativistic electron beams

    Full text link
    Many studies have shown that high-energy γ\gamma-photon beams can be efficiently generated via nonlinear Compton scattering driven by laser pulses with intensities >1022W/cm2> 10^{22}\rm{W/cm^2} recently available in laboratories. Here, we propose a laserless scheme to efficiently generate high-energy polarized γ\gamma-photon beams by collision of two ultrarelativistic electron beams. The self-generated field of a dense driving electron beam provides the strong deflection field for the other ultrarelativistic seeding electron beam. A QED Monte Carlo code based on the locally constant field approximation is employed to simulate the collision process, and the polarization properties of produced γ\gamma photons are investigated. The simulation results and theoretical analysis indicate that the photon polarization, including both linear and circular polarizations, can be tuned by changing the initial polarization of the seeding beam. If an unpolarized seeding beam is used, linearly polarized photons with an average polarization of 55\% can be obtained. If the seeding beam is transversely (longitudinally) polarized, the linear (circular) polarization of photons above 3 GeV can reach 90\% (67\%), which is favorable for highly polarized, high-energy γ\gamma photon sources.Comment: 12 pages, 8 figure

    The primordial black holes solution to the cosmological monopole problem

    Full text link
    Recently, the pulsar timing array (PTA) collaborations, including CPTA, EPTA, NANOGrav, and PPTA, announced that they detected a stochastic gravitational wave background spectrum in the nHz band. This may be relevant to the cosmological phase transition suggested by some models. Magnetic monopoles and primordial black holes (PBHs), two unsolved mysteries in the universe, may also have their production related to the cosmological phase transition. Inspired by that, we revisit the model proposed by Stojkovic and Freese, which involves PBHs accretion to solve the cosmological magnetic monopole problem. We further develop it by considering the increase in the mass of the PBHs during accretion and taking the effect of Hawking radiation into account. With these new considerations, we find that solutions to the problem still exist within a certain parameter space. In {addition}, we also generalize the analysis to PBHs with {an} extended distribution in mass. This may be a more interesting scenario because PBHs that have accreted magnetic monopoles might produce observable electromagnetic signals if they are massive enough to survive in the late universe.Comment: Eur. Phys. J. C (2024) 84:3

    Ballistic Thermal Rectification in Asymmetric Three-Terminal Mesoscopic Dielectric Systems

    Full text link
    By coupling the asymmetric three-terminal mesoscopic dielectric system with a temperature probe, at low temperature, the ballistic heat flux flow through the other two asymmetric terminals in the nonlinear response regime is studied based on the Landauer formulation of transport theory. The thermal rectification is attained at the quantum regime. It is a purely quantum effect and is determined by the dependence of the ratio τRC(ω)/τRL(ω)\tau_{RC}(\omega)/\tau_{RL}(\omega) on ω\omega, the phonon's frequency. Where τRC(ω)\tau_{RC}(\omega) and τRL(ω)\tau_{RL}(\omega) are respectively the transmission coefficients from two asymmetric terminals to the temperature probe, which are determined by the inelastic scattering of ballistic phonons in the temperature probe. Our results are confirmed by extensive numerical simulations.Comment: 10 pages, 4 figure

    Key-point Detection based Fast CU Decision for HEVC Intra Encoding

    Get PDF
    As the most recent video coding standard, High Efficiency Video Coding (HEVC) adopts various novel techniques, including a quad-tree based coding unit (CU) structure and additional angular modes used for intra encoding. These newtechniques achieve a notable improvement in coding efficiency at the penalty of significant computational complexity increase. Thus, a fast HEVC coding algorithm is highly desirable. In this paper, we propose a fast intra CU decision algorithm for HEVC to reduce the coding complexity, mainly based on a key-point detection. A CU block is considered to have multiple gradients and is early split if corner points are detected inside the block. On the other hand, a CU block without corner points is treated to be terminated when its RD cost is also small according to statistics of the previous frames. The proposed fast algorithm achieves over 62% encoding time reduction with 3.66%, 2.82%, and 2.53% BD-Rate loss for Y, U, and V components, averagely. The experimental results show that the proposed method is efficient to fast decide CU size in HEVC intra coding, even though only static parameters are applied to all test sequences

    A Vertically Resolved MSE Framework Highlights the Role of the Boundary Layer in Convective Self-Aggregation

    Full text link
    Convective self-aggregation refers to a phenomenon in which random convection can self-organize into large-scale clusters over an ocean surface with uniform temperature in cloud-resolving models. Previous literature studies convective aggregation primarily by analyzing vertically integrated (VI) moist static energy (MSE) variance. That is the global MSE variance, including both the local MSE variance at a given altitude and the covariance of MSE anomalies between different altitudes. Here we present a vertically resolved (VR) MSE framework that focuses on the local MSE variance to study convective self-aggregation. Using a cloud-resolving simulation, we show that the development of self-aggregation is associated with an increase of local MSE variance, and that the diabatic and adiabatic generation of the MSE variance is mainly dominated by the boundary layer (BL). The results agree with recent numerical simulation results and the available potential energy analyses showing that the BL plays a key role in the development of self-aggregation. We further present a detailed comparison between the global and local MSE variance frameworks in their mathematical formulation and diagnostic results, highlighting their differences.Comment: 50 pages, 2 tables, 12 figures, submitted to the Journal of the Atmospheric Science
    • …
    corecore